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1 Introduction

Rotations in 3D space are useful for many applications � physics engines, robotics,
perception � as they encode the orientation of a rigid body. However, they are tricky:
they belong to a group1 but not a vector space, i.e. the linear combination of rotations
is not a rotation. As a consequence, the usual algorithms for interpolation, integration
or optimization won't work out of the box with rotations, or will work imperfectly.
Various sets of parameters � or parameterizations � can be used to describe rotation

objects. Geometrically, a rotation is characterized by its axis and a scalar angle. Hence,
intuitively, a rotation has three degrees of freedom: two for the direction of its axis, and
one for its angle. However, since rotations do not form a vector space, there exists no ideal
parameterization, i.e. a di�erentiable bijection between rotations and a set of parameters
belonging to R3 (this would be ideal because usual algorithms on vector spaces could be
applied to rotations without modi�cation). There is therefore no single best choice of
parameters for working with rotations. It has to be adapted to the application and the
context.
The choice of a parameterization for rotations is a trade-o� between redundancy and

singularity. As we will see, all common parameterizations lie in a vector space of dimen-
sion three or greater. Minimal parameterizations have exactly three independent vector
space parameters, but have singularities, intuitively de�ned as a lack of injectivity: there
is a non-trivial subspace of the parameter space that yields the same rotation. Redundant
parameterizations have strictly more than three independent vector space parameters,
which allow them to be singularity-free. The price to pay for this redundancy is that
these parameters must meet certain constraints. On the one hand, at a singularity point,
algorithms will usually break in various ways. On the other hand, it is not obvious to
meet parameter constraints while applying a given algorithm: often, it changes its com-
plexity2. Hence, for a given application, the choice of a parameter set for rotations can
usually be guided by answering the following questions:

� Can singularities be avoided? It is usually possible if the rotations involved in the
problem at hand only span a subset of all rotations, or if one can re-parameterize
one's way out of singularities.

� Can parameter constraints be applied together with the target algorithm? Con-
straints may be applied exactly or loosely3

� Is the parameter choice e�cient for the rotation computations which need to be
performed by the algorithm? Di�erent parameter sets have di�erent performance
trade-o�s with respect to elementary computations such as composition, vector
rotation, integration or Jacobian computations for optimization.

1They are the simplest real-life example of a Lie group
2For instance, constrained optimization is more complex than unconstrained optimization
3The simplest solution is to ignore constraints and apply the algorithm as if the parameters were in a

vector space, followed by a projection step on the constraint set. One of the simplest example of this

strategy is normalized quaternion interpolation lerp, also known as nlerp.
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The most widely used parameterizations are 3 × 3 matrices with orthonormality con-
straints, Euler angles, and unitary quaternions. However, many other possible param-
eterizations exist. While some are merely mathematical curiosities, others can be very
useful, depending on the application. Amongst these are exponential coordinates and
MRP � Modi�ed Rodrigues Parameters �, a lesser-known but very interesting pa-
rameter set. The main purpose of this paper is to present, in a consistent style, a
self-contained calculation of the Lie di�erentials of both the exponential coordinates and
the MRP parameterization, and their respective inverses. For this reason, we chose to
carry out all computations using only elementary calculus, and not Lie group theory.
First, in section 2, we recall basic useful 3D rotation formulas and their connections

with unitary quaternions. Since this material is widely available elsewhere, we don't go
into much detail. Section 3 de�nes left and right Lie di�erentials � a.k.a. Jacobians � for
smooth functions taking their values in the space of unitary quaternionsQu, which is a Lie
group. We then connect these seemingly arti�cial de�nitions with the time derivative �
i.e. angular velocity � of a parameterized rotation curve. In contrast with most references
on the subject ([1], [2]), we don't work directly with parameterizations taking their value
in the group SO3 of 3D rotations, but instead use unitary quaternions as the arrival space.
This means there is a small discrepancy in the Jacobian formulas � speci�cally, by a
factor of 2 � with these references. This is not a problem however, as this discrepancy is
resolved when using the Lie di�erentials to compute actual angular velocities. Section 4
then discusses and derives the Lie di�erentials of the exponential parameterization and
its inverse (the logarithm map), while section 5 discusses and derives the Lie di�erentials
of the MRP parameterization and its inverse.

2 3D Rotation Matrices and Unitary Quaternions

This section recalls well-known formulas concerning the group of 3D rotation matrices
SO3, and its connection with the group of unitary quaternions Qu. Since this material
is widely available elsewhere, we will skip derivation details.

2.1 Matrices

2.1.1 De�nition

Rotations in 3D space can be represented by 3 × 3 matrices R satisfying the following
property:

RTR = RRT = Id, det(R) = 1. (1)

2.2 Quaternions

2.2.1 De�nition

We assume some familiarity with the representation of 3D rotations as unitary quater-
nions, and will just recall some formulas we will need later on. Given a unitary quaternion
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q, we denote by qs and qv its scalar and vector part:

q = (qs, qv), qs ∈ R, qv ∈ R3. (2)

The quaternion q being normalized, we have

q2s + ||qv||2 = 1. (3)

the quaternion product ∗ is de�ned by the following formula:

q1 ∗ q2 = (qs1qs2 − qv1 · qv2 , qs1qv2 + qs2qv1 + qv1×qv2) . (4)

A rotation of � normalized � axis n and angle θ can be represented by the following
� normalized � quaternion:

q =
(
cos
[
θ
2

]
, sin

[
θ
2

]
n
)
. (5)

All in all, quaternions are an interesting balanced parameterization of rotations: they
have no singularities, yet have few parameters (only one parameter more than a minimal
parameterization). Moreover, the constraint which needs to be satis�ed by a quaternion
parameterization � the unitary constraint � is rather simple. This makes quaternions
a good and safe default choice. Nevertheless, if one is able to avoid singularities, using
minimal parameterizations can be worth the extra e�ort (see section 1).

2.3 Euler Angles

The best-known family of minimal rotation parameterizations is the so-called Euler an-
gles. We will skip results for Euler angles as relevant material is widely available else-
where. The main drawback of using Euler angles is that singularities � called gimbal

locks in this context � can occur relatively easily. For this reason, we will focus on two
alternative minimal parameterizations: exponential coordinates and Modi�ed Rodrigues
Parameters � MRPs. But �rst, in the next section, we will de�ne the basic tool we
need to carry out computations: Lie di�erentials.

3 Left and Right Lie Di�erentials for Quaternion-Valued

Functions

3.1 De�nition

We introduce Lie di�erentials somewhat out of the blue in the following de�nition. We
then explain why we care about these objects in section 3.2.

De�nition 1 Let ϕ : Rn → Qu be a function whose values are unitary quaternions.

Let us de�ne ϕ̃ as the same function where the target space is considered to be R4, and

suppose that ϕ̃ is di�erentiable. For a given point x ∈ Rn, we de�ne the left � resp.,
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right � Lie di�erential of ϕ at point x Dl
xϕ : Rn → R3 � resp., Dr

xϕ : Rn → R3 as the

linear mappings satisfying:

∀v ∈ Rn, Dl
xϕ(v) := Im

(
Dϕ̃x(v) ∗ ϕ̃(x)

)
, (6)

and

∀v ∈ Rn, Dr
xϕ(v) := Im

(
ϕ̃(x) ∗Dϕ̃x(v)

)
. (7)

The following proposition holds:

Proposition 1

∀x ∈ Rn, ∀v ∈ Rn, Dxϕ̃(v) = Dl
xϕ(v) ∗ ϕ(x), (8)

and

∀x ∈ Rn, ∀v ∈ Rn, Dxϕ̃(v) = ϕ(x) ∗Dr
xϕ(v), (9)

with the small abuse of notation that in the above formulas, Dxϕ(v) � which belongs to

R3 � has to be interpreted as the corresponding purely imaginary quaternion.

Proof of proposition 1. Since ϕ(x) belongs to Qu, we can write

∀x ∈ Rn, ϕ̃(x) ∗ ϕ̃(x) = 1. (10)

We can di�erentiate at a given point x, and obtain, by linearity of the conjugate:

∀v ∈ Rn, Dϕ̃x(v) ∗ ϕ̃(x) + ϕ̃(x) ∗Dϕ̃x(v) = 0. (11)

We recognize:

∀v ∈ Rn, Dϕ̃x(v) ∗ ϕ̃(x) + Dϕ̃x(v) ∗ ϕ̃(x) = 0. (12)

This means that Dϕ̃x(v) ∗ ϕ̃(x) is a purely imaginary quaternion.

Proposition 2 The left and right Lie di�erentials are linked by the following formula:

∀x ∈ Rn, ∀v ∈ Rn, Dr
xϕ(v) = ϕ(x) ∗Dl

xϕ(v) ∗ ϕ(x). (13)

In other words,

∀x ∈ Rn, ∀v ∈ Rn, Dr
xϕ(v) = Rϕ(x)D

l
xϕ(v). (14)

Proof of proposition 2. Thanks to formulas (8) and (9):

∀x, ∀v, Dl
xϕ(v) ∗ ϕ(x) = ϕ(x) ∗Dr

xϕ(v). (15)

Multiplying left by ϕ(x) yields:

∀x, ∀v, ϕ(x) ∗Dl
xϕ(v) ∗ ϕ(x) = ϕ(x) ∗ ϕ(x) ∗Dr

xϕ(v). (16)

But, since ϕ(x) is unitary, ϕ(x) ∗ ϕ(x) = (1, 0). Hence,

∀x, ∀v, ϕ(x) ∗Dl
xϕ(v) ∗ ϕ(x) = Dr

xϕ(v), (17)

and the proof is done.
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3.2 Lie Di�erentials and Rotation Curves

The above de�nition can seem arbitrary, but it is not. Loosely speaking, if ϕ : Rn → Qu is
a vector-space parameterization of rotations, left � resp., right � Lie di�erentials of ϕ are
what connects the derivatives in parameter space with angular velocities in the inertial �
resp., body � frame. More precisely, let us consider a rotation parameterization ϕ :
Rn → Qu, and a rotation curve t→ q(t) parameterized by time t, i.e..

q(t) := ϕ
(
α(t)

)
, where

{
t→ α(t)

R→ Rn
is smooth. (18)

If t→ ωI(t) is the corresponding angular velocity in the inertial frame, on the one hand,
we have � thanks to the quaternion time derivative formula:

q̇ =
ωI
2
∗ q. (19)

On the other hand, using the chain rule (q is the composition of α by the parameterization
ϕ),

q̇ = Dqϕ̃
(
α̇
)
, (20)

and, multiplying � right � by q = ϕ(α) and using identity (8),

ωI = 2Dqϕ̃(α̇) ∗ ϕ(α). (21)

Hence,
ωI = 2Dl

qϕ(α̇), (22)

Similarly, if t→ ωB(t) is the corresponding angular velocity in the body frame, we obtain:

ωB = 2Dr
qϕ(α̇). (23)

To reiterate, in formulas (22) and (23):

� t→ q(t) is a function whose values are unitary quaternions representing rotations,

� t → ωI(t) � resp., t → ωB(t) � is the corresponding angular velocity in the
inertial � resp., body � frame (its values are vectors of R3),

� t→ α(t) is the parameter curve (its values are vectors of Rn, same for α̇),

� Dl
qϕ � resp., Dr

qϕ � is the left � resp., right � Lie di�erential of the param-
eterization at point q. It is a linear mapping from Rn to R3. For a minimal
parameterization, n = 3, and the di�erentials can be represented by a 3×3 matrix.
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4 Exponential Coordinates

4.1 De�nition

The idea behind exponential coordinates is simple: since, geometrically speaking, a 3D
rotation is given by a rotation axis and a scalar angle around this axis, we can represent
a rotation by a vector α ∈ R3, whose direction is the rotation axis, and whose norm is
the rotation angle. This corresponds to the quaternion

qα =

(
cos
[
||α||
2

]
, sin

[
||α||
2

] α

||α||

)
. (24)

Hence, the exponential map e is de�ned by:

e :


R3 → Qu,

α→
(
cos
[
||α||
2

]
, sin

[
||α||
2

] α

||α||

)
.

(25)

4.2 Lie Di�erentials of the Exponential Map On Qu

Proposition 3 (Lie di�erentials of the exponential map on Qu � �rst form) Let

α ∈ R3. Then, the left � resp., right � Lie di�erentials of the exponential map on Qu
Dleα : R3 → R3 � resp., Dreα : R3 → R3 � are given by:

∀v ∈ R3, Dleα(v) =
1

2

(
sinc||α||v +

[
1− cos ||α||
||α||2

]
α×v +

[
1− sinc ||α||
||α||2

]
(α · v)α

)
,

(26)
and

∀v ∈ R3, Dreα(v) =
1

2

(
sinc||α||v −

[
1− cos ||α||
||α||2

]
α×v +

[
1− sinc ||α||
||α||2

]
(α · v)α

)
.

(27)

These formulas can be expressed in another way, which is often more convenient.

Proposition 4 (Lie di�erentials of the exponential map on Qu � second form)

Equations (26) and (27) can also be expressed as:

Dleα(v) =
1

2

(
v +

[
1− cos ||α||
||α||2

]
α×v +

[
1− sinc ||α||
||α||2

]
α×(α×v)

)
, (28)

and

Dreα(v) =
1

2

(
v −

[
1− cos ||α||
||α||2

]
α×v +

[
1− sinc ||α||
||α||2

]
α×(α×v)

)
. (29)

Moreover, if we denote by α×
4 the cross product linear mapping, i.e..

α× :

{
R3 → R3

v → α×v
, (30)

4Of course, what is hidden here is the Lie algebra so3 and its generators. . .
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equations (28) and (29) can be interpreted as an identity between linear mappings, i.e..

Delα =
1

2

(
Id+fαα× + gαα

2
×
)
, and Derα =

1

2

(
Id−fαα× + gαα

2
×
)
, (31)

where

fα =
1− cos ||α||
||α||2

, and gα =
1− sinc ||α||
||α||2

. (32)

Proof of propositions 3 and 4. We start from de�nition (25), and di�erentiate e as
if it were a function ẽ from R3 to R4. For this we apply the chain rule multiple times.
First, notice that the following formula holds for the di�erential of the norm:

∀v ∈ R3, Dα||||(v) =
α · v
||α||

. (33)

We deduce:

Dẽα(v) =

(
− sin

[
||α||
2

] α · v
2||α||

, cos
[
||α||
2

] (α · v)α
2||α||2

+ sin
[
||α||
2

] v

||α||
− sin

[
||α||
2

] (α · v)α
||α||3

)
.

(34)
De�nitions (6) and (7) tell us that we need to compute the imaginary parts of the
quaternions Dẽα(v) ∗ eα and eα ∗Dẽα(v). We will also compute their scalar parts: these
should be zero, so they can be used as a convenient sanity check. Let us introduce
auxiliary quantities which will improve the readability of the computations:

cα := cos
[
||α||
2

]
, and sα := sin

[
||α||
2

]
. (35)

Also, recall that:

eα =

(
cos
[
||α||
2

]
, − sin

[
||α||
2

] α

||α||

)
. (36)

Let us start by considering the left Lie di�erential, i.e.. the quaternion productDẽα(v)∗eα.
Using (34), (36) and the quaternion product formula (4),

(Dẽα(v) ∗ eα)s = −sαcα
α · v
2||α||

+ sαcα
(α · v)(α · α)

2||α||3
+ s2α

v · α
||α||2

− s2α
α · v
||α||2

, (37)

that is:
(Dẽα(v) ∗ eα)s = 0, (38)

as it should be. Now for the imaginary part:

(Dẽα(v) ∗ eα)v = s2α
(α · v)α
2||α||2

+ cα

[
cα(α · v)α
2||α||2

+
sαv

||α||
− sα(α · v)α

||α||3

]
− s2α

v×α
||α||2

. (39)

We gather the terms:

(Dẽα(v) ∗ eα)v =
sαcα
||α||

v +
||α||
2 − sαcα
||α||3

(α · v)α+
s2α
||α||2

α× v. (40)
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Hence,

Dleα(v) =
sαcα
||α||

v +
||α||
2 − sαcα
||α||3

(α · v)α+
s2α
||α||2

α× v. (41)

Let's work on the scalar coe�cients. First,

sαcα
||α||

=
1

||α||
sin
[
||α||
2

]
cos
[
||α||
2

]
=

1

2

sin ||α||
||α||

=
1

2
sinc ||α||. (42)

Second, reusing (42),
||α||
2 − sαcα
||α||3

=
1

2

1− sinc ||α||
||α||2

. (43)

Finally,
s2α
||α||2

=
1

2

1− cos ||α||
||α||2

. (44)

If we plug (42), (43) and (44) into (41), we get formula (26). Let us now consider the
right Lie di�erential, i.e.. the quaternion product eα ∗Dẽα(v). Combining (34), (36) and
the quaternion product formula (4),

(eα ∗Dẽα(v))s = −sαcα
α · v
2||α||

+ sαcα
||α||2(α · v)

2||α||3
+ s2α

α · v
||α||
− s2α

||α||2(α · v)
||α||3

, (45)

that is:
(eα ∗Dẽα(v))s = 0, (46)

as it should be. Now for the imaginary part:

(eα ∗Dẽα(v))v = s2α
(α · v)α
2||α||2

+ cα

[
cα

2||α||2
(α · v)α+

sαv

||α||
− sα(α · v)α

||α||3

]
− s2α
||α||2

α×v. (47)

Let's gather the terms:

(eα ∗Dẽα(v))v =
sαcα
||α||

v +
||α||
2 − sαcα
||α||3

(α · v)α− s2α
||α||2

α×v. (48)

Hence,

Dreα(v) =
sαcα
||α||

v +
||α||
2 − sαcα
||α||3

(α · v)α− s2α
||α||2

α×v, (49)

which is the same formula as (41), excepted the third term whose sign is �ipped. For-
mula (27) follows from this observation.
Let us now turn to proving proposition 4. For this, recall the double cross product

formula:
∀(u, v, w) ∈ R3 × R3 × R3, u×(v×w) = (u · w)v − (u · v)w. (50)

Hence,
∀α ∈ R3, ∀v ∈ R3, (α · v)α = α×(α×v) + ||α||2v. (51)

We deduce:

sinc||α||v +
[
1− sinc||α||
||α||2

]
(α · v)α = v +

[
1− sinc||α||
||α||2

]
α×(α×v). (52)

Plugging the above identity into (26) � resp., (27) � gives (28) � resp., (29).
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4.3 Lie di�erentials of the logarithm map on Qu

The log map is the inverse of the exponential map, i.e..

log :

Qu → R3,

q → 2 arccos(qs)
qv
||qv||

.
(53)

We de�ne the left � resp., right � Lie di�erential of the log map as the inverse of the
left � resp., right � Lie di�erential of the exponential map: given q ∈ Qu,

Dl logq :

{
R3 → R3

v →
(
Dlelog q

)−1
(v)

, Dr logq :

{
R3 → R3

v →
(
Drelog q

)−1
(v)

(54)

where Dlelog q and Drelog q are de�ned by equation (31), with α = log q. It turns out we
can analytically �nd these inverse mappings.

Proposition 5 (Lie di�erentials of the logarithm map on Qu, �rst form) Let q ∈
Qu, and α = log q. The following formulas are true:

Dl logq = 2

(
Id−1

2
α× +

[
1

||α||2
− sin||α||

2||α||(1− cos||α||

]
α2
×

)
, (55)

and

Dr logq = 2

(
Id+

1

2
α× +

[
1

||α||2
− sin||α||

2||α||(1− cos||α||

]
α2
×

)
(56)

The formulas are sometimes expressed as:

Proposition 6 (Lie di�erentials of the logarithm map on Qu, second form) Let

q ∈ Qu, and α = log q. The following formulas are true:

Dl logq = 2

(
Id−1

2
α× +

[
1

||α||2
− 1 + cos||α||

2||α|| sin||α||

]
α2
×

)
, (57)

and

Dr logq = 2

(
Id+

1

2
α× +

[
1

||α||2
− 1 + cos||α||

2||α|| sin||α||

]
α2
×

)
(58)

Yet another variant is:

Proposition 7 (Lie di�erentials of the logarithm map on Qu, third form) Let q ∈
Qu, and α = log q. The following formulas are true:

∀v ∈ R3, Dl logq(v) = 2

(
||α||
2

cot
[
||α||
2

]
v − 1

2
α×v +

[
1− ||α||

2
cot
[
||α||
2

]] α · v
||α||2

α

)
,

(59)
and

∀v ∈ R3, Dr logq(v) = 2

(
||α||
2

cot
[
||α||
2

]
v +

1

2
α×v +

[
1− ||α||

2
cot
[
||α||
2

]] α · v
||α||2

α

)
.

(60)
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Proof of propositions 5, 6 and 7. Notice that

α3
× = −||α||2α×. (61)

Hence, looking at equations (61) and (31) gives us the idea of looking for the inverse
mappings under the form

Dl logq = 2
(
Id+µαα× + ναα

2
×
)
, and Dr logq = 2

(
Id−µαα× + ναα

2
×
)
, (62)

where
α = log q, µα : R→ R, and να : R→ R. (63)

Let us �nd the unknowns µα and να. On the one hand, we must have DleαD
l logq = Id,

which translates to: (
Id+µαα× + ναα

2
×
) (

Id+fαα× + gαα
2
×
)
= Id, (64)

where fα and gα are de�ned by (32). Thanks to (61), the left hand side only has terms
in Id, α× and α2

×, and the previous equation becomes:(
fα + µα − ||α||2µαgα − ||α||2ναfα

)
α× +

(
gα + µαfα + να − ||α||2ναgα

)
α2
× = 0. (65)

We thus have to solve the following 2× 2 linear system in µα and να:{
(1− ||α||2gα)µα − ||α||2fα να = −fα,

fαµα + (1− ||α||2gα) να = −gα.
(66)

On the other hand, we must have DreαD
r logq = Id, which translates to:(

Id−µαα× + ναα
2
×
) (

Id−fαα× + gαα
2
×
)
= Id . (67)

If we expand this identity, using again (61), we obtain:(
−fα − µα + ||α||2µαgα + ||α||2ναfα

)
α× +

(
gα + µαfα + να − ||α||2ναgα

)
α2
× = 0, (68)

which also corresponds to linear system (66). Solving this system yields:
µα =

−||α||2fαgα − (1− ||α||2gα)fα
||α||2f2α + (1− ||α||2gα)2

,

να =
f2α − (1− ||α||2gα)gα
||α||2f2α + (1− ||α||2gα)2

,

(69)

that is: 
µα =

−fα
||α||2f2α + (1− ||α||2gα)2

,

να =
f2α − (1− ||α||2gα)gα
||α||2f2α + (1− ||α||2gα)2

.

(70)
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We can now replace fα and gα by their formulas, to simplify things a little bit:

||α||2f2α + (1− ||α||2gα)2 =
1

||α||2
(1− cos||α||)2 + sinc2||α||2 = 2(1− cos||α||)

||α||2
= 2fα. (71)

Also,

f2α − (1− ||α||2gα)gα =
1

||α||4
(
(1− cos||α||)2 − sin||α||(||α|| − sin||α||))

)
, (72)

which translates to

f2α − (1− ||α||2gα)gα =
1

||α||4
(2(1− cos||α||)− ||α|| sin||α||) = 1

||α||2
(2fα − sinc||α||). (73)

Putting (70), (71) and (73) together:
µα = −1

2
,

να =
1

||α||2
− sin||α||

2||α||(1− cos||α||)
,

(74)

which, combined with (62), gives formulas (55) and (56), i.e.. proposition 5. Since

sin||α||
2||α||(1− cos||α||)

=
sin||α||

2||α||(1− cos||α||)
1 + cos||α||
1 + cos||α||

=
sin||α||(1 + cos||α||)
2||α||(1− cos2||α||)

=
1 + cos||α||
2||α|| sin||α||

,

(75)
Proposition 6 also holds. Finally, let's prove proposition 7. First, notice that:

sin||α||
2||α||(1− cos||α||)

=
1

2||α||

2 sin
[
||α||
2

]
cos
[
||α||
2

]
2 sin2

[
||α||
2

] =
1

2||α||
cot
[
||α||
2

]
. (76)

Also,
∀v ∈ R3, α2

×v = (α · v)α− ||α||2v. (77)

Thus,

∀v ∈ R3, Dl logq(v) = 2

(
v − 1

2
α×v +

[
1

||α||2
− 1

2||α||
cot
[
||α||
2

]] (
(α · v)α− ||α||2v

))
,

(78)
and:

∀v ∈ R3, Dl logq(v) = 2

(
||α||
2

cot
[
||α||
2

]
v − 1

2
α×v +

[
1− ||α||

2
cot
[
||α||
2

]] α · v
||α||2

α

)
,

(79)
which is (59). Similarly, (60) holds. Formulas (59) and (60) are probably the most
e�cient, implementation wise. Formula (60) is the one derived in [3].
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4.4 Advantages and drawbacks

Advantages

� Exponential coordinates are a minimal representation of rotations.

� This representation is quite intuitive, and the geometrical parameters of a rotation
(axis and angle) are easily extracted from its quaternion representation.

� Since this parametrization is unconstrained and lies in a vector space, it can be
used "as-is" in any optimization algorithm using derivatives or Jacobians (Gauss-
Newton, l-bfgs, etc.).

Drawbacks

� Exponential coordinates have singularities � as do every minimal parameterization
of a true manifold �, which can render them unsuitable for some applications.
However, these singularities are less restrictive than Euler angles' gimbal locks.

� Exponential coordinate Jacobians are quite costly to compute, in particular because
their formulas involve a lot of transcendental functions.

5 Modi�ed Rodrigues Parameters

As seen in the previous section, exponential coordinates encode a rotation as a 3D vector,
whose direction is the rotation axis, and norm is the rotation angle. Of course, many
alternative 3D parameterizations could be devised, by encoding a rotation as a 3D vector
whose direction is the rotation axis, and norm is any strictly increasing function of the
rotation angle. Among these, the Modi�ed Rodrigues Parameters � MRPs �([4]) are a
very interesting parameterization, which, compared with exponential coordinates, o�ers
a somewhat better handling of singularities, and much cheaper di�erential evaluation.
Geometrically, this parameterization corresponds to the 4D stereographic projection of
Qu � seen as the unit ball of R4 � on a 3D hyperplane.

5.1 De�nition

Analytically, if we consider a rotation of normalized axis n and angle θ, we represent it
by the 3D vector

β := tan
[
θ
4

]
n. (80)

It turns out the quaternionic representation of our rotation can be expressed as a rational
fraction of β and ||β||. To see this, recall the classical trigonometric expressions:

∀x ∈ [0, 2π[, cos2x =
1− t2

1 + t2
, and sin 2x =

2t

1 + t2
, where t := tan

[
x
2

]
. (81)

Since the quaternionic representation of the rotation is

q =
(
cos
[
θ
2

]
, sin

[
θ
2

]
n
)
, (82)
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we deduce its quaternionic representation as a function of β:

q =

(
1− ||β||2

1 + ||β||2
,

2β

1 + ||β||2

)
. (83)

5.2 Lie Di�erentials of the MRP Mapping

Proposition 8 Consider the MRP parameterization m : R3 → Qu, de�ned as:

m(β) =

(
1− ||β||2

1 + ||β||2
,

2β

1 + ||β||2

)
. (84)

Then, its left � resp., right � Lie di�erential Dlmβ � resp., Drmβ � are given by the

following formulas:

∀v ∈ R3, Dlmβ(v) = [1 +ms(β)]
(
v +mv(β)×v

)
+mv(β)×(mv(β)×v), (85)

and

∀v ∈ R3, Drmβ(v) = [1 +ms(β)]
(
v −mv(β)×v

)
+mv(β)×(mv(β)×v). (86)

Proof of proposition 8. As usual, we start by computing the di�erential of the MRP

mapping m considered as a mapping m̃ from R3 to R4. Let us introduce the auxiliary
functions

ϕ :


R→ R

t→ 1− t
1 + t

, and ψ :


R→ R

t→ 2

1 + t

. (87)

We have
m̃(β) =

(
ϕ
(
||β||2

)
, ψ
(
||β||2

)
β
)
. (88)

Hence, using the chain rule:

Dm̃β(v) =
(
2ϕ

′
(||β||2)(β · v), ψ(||β||2)v + 2ψ

′
(||β||2)(β · v)β

)
. (89)

Since

ϕ
′
(t) = − 2

(1 + t)2
, and ψ

′
(t) = − 2

(1 + t)2
, (90)

we deduce:

Dm̃β(v) =

(
− 4(β · v)
(1 + ||β||2)2

,
2v

1 + ||β||2
− 4(β · v)β

(1 + ||β||2)2

)
. (91)

This can be expressed as an expression of m(β) components only. To see this, notice
that:

2

1 + ||β||2
= 1 +

1− ||β||2

1 + ||β||2
= 1 +ms(β), (92)

and, consequently,

4(β · v)
(1 + ||β||2)2

=
2

1 + ||β||2
β · v

1 + ||β||2
=
[
1 +ms(β)

]
mv(β) · v. (93)
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On the other hand:

4(β · v)β
(1 + ||β||2)2

=
2(β · v)
1 + ||β||2

2β

1 + ||β||2
= (mv(β) · v)mv(β). (94)

Hence, equation (91) becomes:

Dm̃β(v) =
(
−
[
1 +ms(β)

](
mv(β) · v

)
,
[
1 +ms(β)

]
v − (mv(β) · v)mv(β)

)
. (95)

One can marvel at the simplicity of this equation, especially when comparing it with (34).
We can now deduce formulas (85) and (86). Recall that:

m(β) = (ms(β), −mv(β)) . (96)

On the one hand, let us verify, as a sanity check, that Dm̃β(v)∗m(β) and m(β)∗Dm̃β(v)
are purely imaginary. Thanks to quaternion product de�nition (4), we have

(Dm̃β(v) ∗m(β))s =

−ms(β)
[
1 +ms(β)

]
(mv(β) · v) +

[
1 +ms(β)

]
(mv(β) · v)− ||mv(β)||2(mv(β) · v), (97)

that is:
(Dm̃β(v) ∗m(β))s =

[
1−m2

s(β)− ||mv(β)||2
]
(mv(β) · v). (98)

Finally,
(Dm̃β(v) ∗m(β))s = 0, (99)

as it should be. Since Dm̃β(v) ∗m(β) = m(β) ∗Dm̃β(v), we also have

(m(β) ∗Dm̃β(v))s = 0. (100)

On the other hand, let us compute the vector parts of Dm̃β(v)∗m(β) andm(β)∗Dm̃β(v).
Thanks to (4), we have

(Dm̃β(v) ∗m(β))v = [1 +ms(β)] (mv(β) · v)mv(β) +ms(β) [1 +ms(β)] v−
ms(β)(mv(β) · v)mv(β)− [1 +ms(β)] v×mv(β), (101)

that is

(Dm̃β(v) ∗m(β))v =

[1 +ms(β)]

(
ms(β)v + (mv(β) · v)mv(β)− v×mv(β)

)
−ms(β)(mv(β) · v)mv(β).

(102)

We recognize:

Dlmβ(v) = ms(β) [1 +ms(β)] v + [1 +ms(β)]mv(β)×v + (mv(β) · v)mv(β). (103)
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Now, thanks to the double cross product formula,

(mv(β) · v)mv(β) = mv(β)×(mv(β)×v) + ||mv(β)||2v. (104)

From this, combined with the fact that m2
s(β) + ||mv(β||2 = 1, we deduce:

Dlmβ(v) = [1 +ms(β)]
(
v +mv(β)×v

)
+mv(β)×(mv(β)×v), (105)

i.e.. formula (85). Similarly, by de�nition of the quaternion product (4),

(m(β) ∗Dm̃β(v))v =

[1 +ms(β)]

(
ms(β)v + (mv(β) · v)mv(β) + v×mv(β)

)
−ms(β)(mv(β) · v)mv(β),

(106)

and

Drmβ(v) = ms(β) [1 +ms(β)] v − [1 +ms(β)]mv(β)×v + (mv(β) · v)mv(β). (107)

Using � again � the double product formula, we deduce

Drmβ(v) = [1 +ms(β)]
(
v −mv(β)×v

)
+mv(β)×(mv(β)×v), (108)

i.e.. formula (86).

5.3 Inverse MRP Mapping

The inverse MRP mapping is to the MRP mapping what the logarithm map is to the
exponential map (see section 4). Recall that, by de�nition, the MRP mapping m is
de�ned by:

m :


R3 → Qu,

β →
(
1− ||β||2

1 + ||β||2
,

2β

1 + ||β||2

)
.

(109)

Proposition 9 The reverse MRP mapping is given by

m−1 :

Qu → R3,

q → qv
1 + qs

.
(110)

Proof of proposition 9. We need to invert formula (109), i.e..
qs =

1− ||β||2

1 + ||β||2
,

qv =
2β

1 + ||β||2
.

(111)
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From the �rst equation, we deduce:

||β||2 = 1− qs
1 + qs

. (112)

Hence,
2

1 + ||β||2
=

2
2

1 + qs

= 1 + qs. (113)

If we apply the previous identity to the second equation of (111), we have

qv = β(1 + qs). (114)

Hence,

β =
qv

1 + qs
, (115)

and the proof is done. Again, we can marvel at the simplicity of this formula, compared
to (53).

5.4 Inverse MRP Mapping Di�erentials

Let us de�ne the left and right �MRP inverse mapping di�erentials Dlm−1 and Drm−1

as the inverse of the left and right MRP mapping di�erentials Dlm and Drm.

Proposition 10 Let q = (qs, qv) be an element of Qu. Let us de�ne by q× the cross

product linear mapping with the vector part of q, i.e..

q× :

{
R3 → R3,

q → qv×v.
(116)

The inverse MRP mapping di�erentials around q are then given by the following formu-

las:

Dl
qm
−1 = 1

1+qs
Id−βl(q)q× + γl(q)q

2
×, (117)

where 
βl(q) =

1 + qs
||qv||2(1 + qs)2 + (1 + qs − ||qv||2)2

,

γl(q) =
1

||qv||2(1 + qs)2 − (1 + qs − ||qv||2)2
,

(118)

and

Dr
qq
−1 = 1

1+qs
Id+βr(q)q× + γr(q)q

2
×, (119)

where 
βr(q) =

1 + qs
||qv||2(1 + qs)2 + (1 + qs − ||qv||2)2

,

γr(q) =
1

||qv||2(1 + qs)2 + (1 + qs − ||qv||2)2
.

(120)
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Proof of proposition 10. Let us start with equation (117). Notice that the identity
giving the left MRP di�erential (85) can be expressed as an identity between linear
mappings:

Dl
βm = (1 + qs)

(
Id+q×) + q2×, (121)

where q = m(β). This gives the idea of looking for the inverse on the same form, i.e..

Dl
qm
−1 = α(q) Id+β(q)q× + γ(q)q2×. (122)

Since we must have
Id = Dl

qm
−1(Dl

βm
)
, (123)

we can deduce the equations satis�ed by α, β and γ. Recall that

q3× = −||q||2q×, (124)

so, expanding the right hand side of (123) yields

Id = α(q)

(
(1 + qs)

(
Id+q×

)
+ q2×

)
+

β(q)

(
(1 + qs)

(
q× + q2×

)
− ||qv||2q×

)
+

γ(q)

(
(1 + qs)

(
q2× − ||qv||2q×

)
− ||qv||2q2×

)
.

(125)

Hence,

Id = α(q)(1 + qs) Id+(
α(q)(1 + qs) + β(q)

(
1 + qs − ||qv||2

)
− γ(q)||qv||2(1 + qs)

)
q×+(

α(q) + β(q)(1 + qs) + γ(q)
(
1 + qs − ||qv||2

))
q2×.

(126)

Introducing
a(q) := 1 + qs, and b(q) := 1 + qs − ||qv||2, (127)

we deduce
Id = a(q)α(q) Id+(

a(q)α(q) + b(q)β(q)− a(q)||qv||2γ(q)
)
q×+(

a(q)α(q) + a(q)2β(q) + a(q)b(q)γ(q)

)
q2×.

(128)

Since Id, q× and q2× are linearly independent, we obtain:
aα = 1,

aα+ bβ −a||qv||2γ = 0,

aα+ a2β +abγ = 0.

(129)
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Note that, in the above equation, we dropped the dependency in q for terseness. We
deduce

a(q) =
1

α(q)
, (130)

and {
bβ − a||qv||2γ = −1,
a2β + abγ = −1.

(131)

Solving (131) in β and γ yields: 
β =

−b− ||qv||2

b2 + ||qv||2a2
,

γ =
b− a2

ab2 − ||qv||2a3
.

(132)

Now notice that
− b− ||qv||2 = −(a− ||qv||2)− ||qv||2 = −a, (133)

and
b− a2 = (1 + qs)− ||qv||2 − (1 + qs)

2

= −qs − q2s − ||qv||2

= −1− qs
= −a.

(134)

Finally, 
β =

−a
||qv||2a2 + b2

,

γ =
1

||qv||2a2 − b2
,

(135)

and we recover formula (117). for formula (119), we start from identity

Id = Dr
qm
−1(Dr

βm
)
. (136)

Similar computations as before yield the following system in α, β and γ:
aα = 1,

−aα+ bβ +a||qv||2γ = 0,

aα− a2β +abγ = 0.

(137)

As before,

a(q) =
1

1 + qs
, (138)

and, this time, {
bβ + a||qv||2γ = 1,

−a2β + abγ = −1.
(139)
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Solving (139) in β and γ yields: 
β =

b+ ||qv||2

b2 + ||qv||2a2
,

γ =
a2 − b

ab2 + ||qv||2a3
.

(140)

Reusing identities and , we deduce
β =

a

||qv||2a2 + b2
,

γ =
1

||qv||2a2 + b2
,

(141)

which proves (119).

5.5 Advantages and Drawbacks

The MRP parameterization has the same advantages and drawbacks as the exponential
coordinates, except that:

� its Lie di�erentials are much simpler, and consequently, much more e�cient to
compute.

� its formulas are always valid, except for the inverse mapping around singularities
corresponding to qs = −1, i.e. angles of 180o. Conversely, exponential map formulas
are all formally singular for small angles, and thus have to be replaced by Taylor
approximations, which yields lesser performance. Also, extra care is needed to set
a proper threshold to trigger the switch to these non-singular alternate expressions.

Changelog

� 2023-04-21: Initial release. Thanks to Alexander Clarke for his careful proofreading
of the manuscript.
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